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BeamDyn: A High-Fidelity Wind Turbine Blade Solver in the  
FAST Modular Framework  

Qi Wang∗1, Nick Johnson†2, Michael A. Sprague‡1, and Jason Jonkman§1 

1National Renewable Energy Laboratory, Golden, CO 80401 
2Colorado School of Mines, Golden, CO 80401 

BeamDyn, a Legendre-spectral-finite-element implementation of geometrically exact beam theory (GEBT), 
was developed to meet the design challenges associated with highly flexible composite wind turbine blades. In 
this paper, the governing equations of GEBT are reformulated into a nonlinear state-space form to support its 
coupling within the modular framework of the FAST wind turbine computer-aided engineering (CAE) tool. 
Different time integration schemes (implicit and explicit) were implemented and examined for wind turbine 
analysis. Numerical examples are presented to demonstrate the capability of this new beam solver. An example 
analysis of a realistic wind turbine blade, the CX-100, is also presented as validation. 

I. Introduction 

In recent years, wind power installations in the United States have exceeded 60 gigawatts in generation capacity, 
and have become an increasingly important part of the overall energy portfolio. Simultaneously, the size of wind 
turbines has also increased in the quest for economies of scale. To ensure the performance and reliability of wind 
turbines, it is crucial to use computer-aided engineering (CAE) tools that are capable of analyzing wind turbine blades 
accurately and efficiently. Although modern computers enable three-dimensional (3D) analysis of a fully resolved 
blade, such analyses are too expensive for iterative and probabilistic design. However, composite wind turbine blades 
are well represented as nonlinear beam models, which can capture the deformation response under realistic operating 
conditions with high fidelity, and in a small fraction of the time required by a fully resolved 3D simulation. 

Beam models are widely used to analyze structures in which one dimension is much larger than the other two. 
Many engineering structures such as bridges, joists, and helicopter rotor blades may be modeled as beams. Similarly, 
beam models are well suited for analyzing wind turbine blades, towers, and shafts. Most wind turbine blades are 
constructed of composite materials, which are more complicated than isotropic beams to analyze because of elastic 
coupling effects, high flexibility, and initial twist/curvatures. The geometrically exact beam theory (GEBT), first pro-
posed by Reissner1, is a beam-deformation model useful in efficient analysis of highly flexible composite structures. 
For instance, GEBT has demonstrated efficacy in helicopter rotor analysis2. Simo3 and Simo and Vu-Quoc4 extended 
Reissner’s work to include 3D dynamic problems. Jelenić and Crisfield5 derived a finite-element (FE) method that 
interpolates the rotation field, thereby preserving the geometric exactness of this theory. Notably, Ibrahimbegović and 
his colleagues implemented this theory for static6 and dynamic7 analysis. Readers are referred to Hodges8, in which 
comprehensive derivations and discussions on nonlinear composite-beam theories can be found. Recently, a mixed FE 
formulation of GEBT along with the numerical implementation was presented by Yu and Blair9. 

FAST is a CAE tool developed by the National Renewable Energy Laboratory (NREL) for analyzing both land-
based and offshore wind turbines under realistic operating conditions. The current beam model in FAST is not capable 
of predictive analysis of highly flexible, composite wind turbine blades. Recently, FAST has been reformulated under a 
new modularized framework that provides a rigorous means by which various mathematical systems are implemented 
in distinct modules. These modules are interconnected to solve for the globally coupled dynamic responses of wind 
turbines and wind plants10,11 . 

In this paper, a 3D displacement-based implementation of geometrically exact beam theory using Legendre spectral 
finite elements is presented. The theory is reformulated in a nonlinear state-space form for the purpose of integrating 
with the FAST framework, thereby introducing an optional high-fidelity beam model as an alternative to the current 
beam model. Several first-order form time integrators, including the explicit fourth-order Runge-Kutta (RK4) and im-
plicit second-order Adams-Moulton (AM2), are examined. This work builds on previous efforts that demonstrated the 
implementation of GEBT and spatial discretization using Legendre spectral finite elements (LSFEs)12–15 in analyzing 
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composite wind turbine blades. The paper is organized as follows. First, the theoretical foundation of the geometri-
cally exact beam theory along with the reformulation of the governing equations into a state-space form is introduced. 
Coupling to the FAST framework is then discussed. Finally, numerical examples are provided to verify and validate 
the accuracy and efficiency of the present model for composite wind turbine blades. 

II. Geometrically Exact Beam Theory 

This section briefly reviews the geometrically exact beam theory. Further details on the content of this section can 
be found in many other papers and textbooks8,9,16 . Figure 1 shows a beam in its initial undeformed and deformed 
states. A reference frame bi is introduced along the beam axis for the undeformed state and a frame Bi is introduced 
along each point of the deformed beam axis. The curvilinear coordinate x1 defines the intrinsic parameterization of 
the reference line. In this paper, matrix notation is used to denote vectorial or vectorial-like quantities. For example, 

B1 

B2 

B3 

Deformed State 

Undeformed State 

r 

R 

R 

s 

r 
u 

x1 

b1 

b2 

b3 

R̂ 

r̂ 

Figure 1: A beam deformation schematic. 

an underline denotes a vector u, a bar denotes unit vector n̄, and a double underline denotes a tensor Δ. Note that 
sometimes the underlines only denote the dimension of the corresponding matrix. The governing equations of motion 
for geometrically exact beam theory can be written as16 

where h and g are the linear and angular momenta resolved in the inertial coordinate system, respectively; F and M 

are the beam’s sectional force and moment resultants, respectively; u is the one-dimensional (1D) displacement of 
a point on the reference line; x0 is the position vector of a point along the beam’s reference line; and f and m are 
the distributed force and moment applied to the beam structure. The notation (•)′ indicates a derivative with respect 
to beam axis x1 and (•̇) indicates a derivative with respect to time. The tilde operator (e•) defines a skew-symmetric 
tensor corresponding to the given vector. In the literature, it is also termed as “cross-product matrix”. For example, 

 
0 −n3 n2 

 

n = n3 0 −n1e   
−n2 n1 0 

The constitutive equations relate the velocities to the momenta and the 1D strain measures to the sectional resultants 
as 

{ } { }
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where M and C are the 6×6 sectional mass and stiffness matrices, respectively (note that they are not really tensors); ǫ 
and κ are the 1D strains and curvatures, respectively; and, ω is the angular velocity vector that is defined by the rotation 
tensor R as ω = axial(Ṙ RT ). The axial vector a associated with a second-order tensor A is denoted a = axial(A) 
and its components are defined as 


a1
 

A32 −A23 


1    

a = axial(A) = a2 = A13 −A31 (5) 
2

a3
 

A21 −A12 
 

The 1D strain measures are defined as 

′ ′
{
ǫ
} {

x0 + u − (R R )̄ı1
}

0= (6) 
κ k 

where k = axial[(RR0)
′ (RR0)

T ] is the sectional curvature vector resolved in the inertial basis and ı̄1 is the unit 
vector along x1 direction in the inertial basis. Note that these three sets of equations, including equations of motion 
Eq. (1) and (2), constitutive equations Eq. (3) and (4), and kinematical equations Eq. (6), provide a full mathematical 
description of elasticity problems. 

For a displacement-based finite-element implementation, there are six degrees of freedom at each node: three 
Tdisplacement components and three rotation components. Here, q denotes the elemental displacement array as q = 

T
[
u pT ] where u is the displacement and p is the rotation-parameter vector. The acceleration array can thus be 

T Tdefined as a = 
[
ü ω̇T ]. For nonlinear finite-element analysis, the discretized forms of displacement, velocity, and 

acceleration are written as 

T T q(x1) = N q̂ q = 
[
u p T ] (7) 

T T v(x1) = N v̂ v = 
[
u̇ ωT ] (8) 

T T a(x1) = N â a = 
[
ü ω̇T ] (9) 

where N is the shape function matrix and (̂·) denotes a column matrix of nodal values. 

III. State-Space Formulation 

NREL has put considerable effort into improving the modularity of FAST. The modules in the new framework can 
be coupled in one of two ways in the time domain: loose and tight. In the loose coupling scheme, data are exchanged 
between the modules at each coupling step, but each module tracks its own states and integrates its own equations 
with its own solver. In a tightly coupled time-integration scheme, each module sets up its own equations, but the states 
are tracked and integrated by a solver common to all of the modules. To enable the most flexibility, it is useful to 
create modules (such as BeamDyn) so that they can support both loose and tight coupling. More details on the FAST 
modularization framework and an initial assessment of the numerical stability, numerical accuracy, and computational 
performance of various coupling schemes can be found in10,15,17 . 

To accommodate the tight coupling scheme in the FAST modular framework, the governing equations (1) and (2) 
needed to be reformulated into a state-space form. First, these equations are recast in compact form as 

Fext FI − (FC ) ′ + FD = (10) 

where FI ,FC and FD , and Fext are the inertial force term, two elastic force terms, and externally applied force term, 
respectively; their definitions are 

{
ḣ
}  

0 0
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h
}
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ġ ũ 0 g
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FC = (12) 
M
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FD = (13) 
′(x̃ + ũ ′ )T F0 {
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Fext = (14) 
m
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Along with the constitutive equations (3) and (4), the inertial force FI can be written explicitly as 
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where m is the mass density per unit span; η is the center of mass location; ̺ is the moment of inertia; and I is the 
identity matrix. The definitions of the acceleration vector a and velocity vector v can be found in Eq. (9) and (8), 
respectively. Using the newly introduced matrices, the compact form of the equations of motion can be rewritten as 

M a + f(q, v, t) = 0 (16) 

where 
−Fext f(q, v, t) = FF −FC′ + FD (17) 

FF = Gv 
 
0 mω̃η̃T 

 {
u̇
}

= (18) 0 ˜ ωω̺

A weighted residual formulation is used to enforce the dynamic equilibrium conditions in Eq. (16) 
lf

− FextNT (Ma + FF −FC′ + FD )dx1 = 0 (19) 
0 

The above equation can be recast as 
Mâ = F (q, v, t) (20) 

where 
lf

M = NT M N dx1 (21) 
0 

lf
+ FextF (q, v, t) = NT (−FF + FC′ −FD )dx1 (22) 

0 

To derive the state-space form of the governing equations, the state variable in first-order form x(t) is introduced 
as {

q(t)
}

x(t) ≡ (23) 
v(t)

Note that the second component of x(t) is not q̇  but v because the angular velocity ω cannot be calculated as the time 
derivative of the rotation parameter p. The angular velocity is related to the rotation parameter by the tangent matrix 
as ω = H(p)ṗ16. Substituting the discretized quantities in Eqs. (7) to (9) into Eq. (23) and using the relation 
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Note that the state-space form, in Eq. (25) and (26), can be solved with any number of ordinary differential equations 
(ODE) integrators for first-order-in-time systems. A viscous damping term is also implemented to account for the 
structural damping. The damping force is defined as 

where µ is a user-provided damping-coefficient diagonal matrix. The damping force can be recast in two separate 
parts, like FC and FD in the elastic force, as 

Readers are refered to Ref.[16] for more details on the damping force and its linearization. 

IV. Implementation of BeamDyn 

The state-space form of GEBT was numerically implemented into a beam solver, called BeamDyn. BeamDyn has 
two sources of input: the user-prescribed parameters and per time step data from the FAST driver code. The input 
parameters from the users are: 

1. Key points that define the natural geometry of the beam; these key points are interpolated by cubic splines 

2. Sectional constants for a 1D beam model 

3. Finite-element mesh information (order of element) 

4. Selection of static14 or dynamic analysis 

5. Time integrators and associated parameters: RK4, AM2, or Generalized-α (for loosing coupling only). 

It is intended to couple separate instances of BeamDyn to FAST for each blade. Structurally, the coupling will 
involve passing motions of the blade root for each blade from FAST’s ElastoDyn structural module to BeamDyn; 
including position, velocity, and acceleration (both translation and rotation); and passing root loads for each blade from 
BeamDyn to ElastoDyn (both forces and moments). Aerodynamically, the coupling will involve passing motions of 
the nodes distributed along each blade from BeamDyn to FAST’s AeroDyn aerodynamics module; including position, 
velocity, and acceleration (both translation and rotation); and passing aerodynamic loads distributed along the blade 
from AeroDyn to BeamDyn. FAST will also send BeamDyn the gravity vector and initial hub motions at initialization 
to enable an initialization of BeamDyn’s states. While not needed to enable the coupling of BeamDyn to FAST, 
BeamDyn will also calculate the internal loads along the beam, calculated by subtracting the inertial loads from the 
externally applied loads. 

The implementation of GEBT with RK4 is straightforward; however, for the AM2 scheme, a linearization is 
required because of its implicit nature. By applying the trapezoidal rule, the state-space form in Eq. (25) can be recast 
as 

where the subscript denotes the discretized time step in which the value is evaluated, and Δt is the time step size. A 
linearization is needed to solve this nonlinear equation. The linearized equation is as follows 
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The coefficient matrices are written as 

lf
ˆ NTK = K N dx1	 (36) 

1 1 
0 

lf
ˆ NTC	 = C N dx1 (37) 
1 1 

0 

lf	 Δt Δt Δtˆ NTK = (A −A + A + A + Q)N dx1
2 2 3 1 5 

0	 2 2 2 
lf  Δt Δt Δt 

 
′ ′T ′ + NT P N + N S N + NT O N dx1	 (38) 

0 2 2 2 
lf Δtˆ NTC	 = (M + A ) N dx1 (39) 

2	 2 4
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where the newly introduced matrices are 

I	 0 
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2k k

Δt I 0 
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1 2 0 I 
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T 
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T
w ηT0 ˜ + ˜ωmη ωm˜
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4 0 ρω

T + ω̃ρ  

0 ˜ωm˜ω˜ ηT 
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The O, P , Q, and S can be found in previous work by Wang et al14. It is also noted that the B matrix is a linearization 
of the tangent matrix H defined as 

∂(H(p))a 
B(p, a) =	 (47) 

∂p 

One major difficulty in implementing geometrically nonlinear theory is the description of rotations in 3D space. As 
discussed in many articles16,18,19, there will be a singular point for any type of vectorial parameterization. To address 
this singular point, we implemented an algorithm proposed by Crisfield and Jelenić18, in which the relative rotations 
are interpolated instead of the total rotations within one element. Although the magnitude of the total rotation may be 
large, it is reasonable to assume that the relative rotation in one finite element is smaller than π. In the time domain, 
all the nodal rotations need to be rescaled at the same time so the highly nonlinear governing equations in Eq. (1) and 
(2) are linearized about the correct point. 

In summary, the newly developed BeamDyn has the following features: 

1.  It is based on the state-space form of geometrically exact beam theory, thus, it can be easily integrated into 
FAST as a structural module with both loose-coupling and tight-coupling schemes using time integrators for 
first-order form ordinary differential equations (ODEs) 

2.  The spectral finite-element method is used to discretize the space domain; exponential convergence rate can be 
expected for a smooth solution 

3.  It is compatible with the FAST modularization network. Variables are categorized into input, output, states, and 
parameters. 
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V. BeamDyn Verification and Validation 

In this section, several numerical cases to verify and validate BeamDyn against numerical solutions and exper-
imental data are presented. As discussed in the introduction, modern wind turbine blade features include initial 
twists/curvatures, elastic coupling, and high flexibility. BeamDyn’s capabilities in addressing these features are exam-
ined. 

A. Initially Twisted/Curved Beams 

An initially twisted beam was examined first. A straight beam (k2 = k3 = 0) with an initial twist (k1 �= 0) is shown 
in Figure 2. The beam is linearly twisted in the positive θ1 direction from 0 degrees at the root to 90 degrees at the 
tip. Table 1 shows the material properties for A36 steel, the beam geometry, and the force applied at the free tip along 
x3 direction. The height and base values reported in the table are the height and base of the rectangular cross section. 
The beam was discretized using a seventh-order LSFE to obtain a converged results. It is widely known that the well-
refined 3D finite-element solution can be considered exact; here we use the 3D results as benchmark solutions. The 
results for the twisted beam are shown in Table 2 and compared to the baseline results obtained from extremely refined 
3D ANSYS analysis using SOLID186 elements. We see that the tip results are quite large (35% of total length) and 
that the agreement between the solid-element and beam-element solutions is very good. These results also serve to 
validate the beam-modeling approach. 

x3 

x2 x2 

x3 x3 

x2 

x1 

x3 

Figure 2: Sketch of an initially twisted beam. 

Table 1: Properties of twisted beam 

Property Value 
Elastic Modulus 200 GPa 
Shear Modulus 79.3 GPa 
Height 0.5 m 
Base 0.25 m 
Length 10 m 
Force 4000 kN 

Table 2: Comparison of tip displacements of an initially twisted beam 

u1 (m) u2 (m) u3 (m) 
BeamDyn -1.132727 -1.715123 -3.578671 
ANSYS -1.134192 -1.714467 -3.584232 
Percent Error 0.129% 0.038% 0.155% 

Next, an initially curved beam was examined. It is clear that the initial curvature plays a major role in the distribu-
tion of the elastic forces within the beam. As such, it is very important to ensure that BeamDyn is capable of modeling 
this effect properly. A widely used benchmark problem for a curved beam is the case proposed by Bathe20, which was 
analyzed for verification. Figure 3 shows the configuration of the cantilevered curved beam being analyzed. The beam 
lies in the x1, x2 plane, the positive x1 direction and the negative x2 direction. A force of 600 pounds is applied in 
the positive x3 direction. The beam is defined by the 45-degree arc with 100-inch radius centered at 100 inches in the 
negative x2 direction. The geometry of the cross section for the curved beam is square, and the material properties can 
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be found in Ref.[20]. The beam was discretized by a fifth-order LSFE. The results of this static analysis are shown in 
Table 3 and are compared to the results published in Bathe20 . 

Figure 3: Sketch of an initially curved beam. 

Table 3: Comparison of tip displacements of an initially curved beam 

u1 (inches) u2 (inches) u3 (inches) 
BeamDyn (one LSFE) -23.7 13.5 53.4 
Bathe-Bolourchi20 -23.5 13.4 53.4 

It can be seen from these results that the simulations from BeamDyn for a initially curved beam match quite well 
with the published results. The results of these cases suggest that BeamDyn is capable of modeling beams with initial 
twist and curvatures. 

B. Static Analysis of CX-100 Blade 

The primary intended use of BeamDyn is analyzing anisotropic wind turbine blades, therefore, the CX-100 was chosen 
as a validation case. The CX-100 is a 9-m blade designed by Sandia National Laboratories21. It was chosen for this 
analysis because it is well characterized, with a wealth of publicly available data regarding its construction and material 
properties. 

The cross-sectional properties as derived from VABS for this beam were provided by D.J. Luscher of Los Alamos 
National Laboratory. These properties were provided at 40 points along the beam. For example, a typical stiffness 
matrix corresponding to 2.2 m along the span of the blade is given by 


193, 000 −75.4 12.2 −75.2 −1970 −3500 

 

C = 103 × 

 

−75.4 
12.2 
−75.2 
−1, 970 

19, 500 
4, 760 
62.6 
67.3 

4, 760 
7, 210 
−450 
17.0 

62.6 
−450 
518 
1.66 

67.3 
17.0 
1.66 
2, 280 

11.3 
2.68 
−1.11 
−879 

 
−3, 500 11.6 2.68 −1.11 −875 4, 240 

where the units associated with stiffness values are Cij (N), Ci,j+3 (N · m), and Ci+3,j+3 (N · m2) for i, j = 1, 2, 3. 
Figure 4 shows the various material layups and the geometry of the CX-100 blade. Each color represents a section 

with unique material properties. Figure 5 shows the normalized bending stiffness along the length of the blade where 
a sharp gradient in the beam axial direction can be observed. The graph shows that the bending stiffness jumped to 
about 10% of its root value in under 10% of the blade length. 

Figure 6 shows the test configuration for the static test performed at the National Wind Technology Center (NWTC) 
in Boulder, Colorado. The whiffle-tree configuration of the test apparatus applied the load at 3.00 m, 5.81 m, and 7.26 
m from the root of the blade to achieve a maximum root moment of 128.6 kN m. The loads and positions are given in 
Table 4 below. 

The out-of-plane displacements, u3, at each of the load points were tracked for the experiment and are given in 
Table 5. The BeamDyn simulation was completed using four seventh-order LSFEs and the results are given in Table 5. 
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Figure 4: Material layup and geometry of the CX-100 wind turbine blade21 . 

Figure 5: Normalized bending stiffness as a function of normalized blade length. 

Figure 6: Test configuration for the static pull test conducted at the NWTC21 . 

Table 4: Positions and applied loads during the CX-100 static loads testing at the NWTC 

Saddle # Radial Position (m) Applied Load (kN) 
1 3.00 16.9 
2 5.81 5.47 
3 7.26 5.59 
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Table 5: Experimental and BeamDyn simulation results for the CX-100 static test 

u3 at saddle #1 (m) u3 at saddle #2 (m) u3 at saddle #3 (m) 
Experimental 0.083530 0.381996 0.632460 
BeamDyn 0.072056 0.381074 0.698850 
Percent Error 13.74% 0.24% 10.5% 

The displacements are plotted in Figure 7 and are overall in good agreement. One reason to explain the discrepancies 
between BeamDyn results and experimental data is that the coupling effects between the degrees of freedom was 
difficult to measure in the experiments. The results obtained by NLBeam, a nonlinear beam solver developed by Los 
Alamos National Laboratory, also can be found in Figure 722. While the NLBeam solution was understood to use the 
same sectional data as the BeamDyn solution, it is currently unknown why the NLBeam solution differs. The focus of 
this case was to validate BeamDyn, not verify BeamDyn against NLBeam, and no attempt has been made to find the 
source of the differences. 

Figure 7: Displacement u3 along the length of the blade for experimental data and BeamDyn simulation. 

Next, a convergence study of the tip displacements was completed for the CX-100 blade in BeamDyn. Figure 8 
shows the error as a function of the number of nodes (5 nodes represents 2 nodes per each of the 4 elements, 9 nodes 
represents 3 nodes per each of the 4 elements, etc.). The percentage error was calculated against the experimental data 
in Table 5. It can be seen that the convergence rate is not exponential as desired. This is likely due to the fact that as 
more nodes are added, different material-property stations are used; those data are not smoothly distributed in space. 
For the next simulation, the blade was meshed such that the element boundaries coincide with the locations where the 
sectional properties are defined. As previously mentioned, the cross-sectional properties for the CX-100 blade were 
given at 40 locations along the length of the blade. To have an element coincide with each sectional property, 39 LSFEs 
were needed. Figure 9 shows the results of this simulation. Each circle on the plot indicates an additional order of the 
LSFE, with the maximum being six. These results demonstrated that exponential convergence was achieved with this 
simulation, albeit with many elements. It can therefore be stated that for composite beams with sharp gradients and 
erratic data in the cross-sectional stiffness matrix, the spectral convergence is compromised, unless element boundaries 
coincident with the discontinuities. It should be noted here that although the convergence rate suffers as a result of 
sharp gradients and erratic data in the cross-sectional stiffness matrix as other finite element22, the simulations still 
return reasonable results in comparison to the experiment data, suggesting that a lack of exponential convergence does 
not compromise the utility of BeamDyn. 

C. Dynamics of a Cantilevered Beam 

For verification of BeamDyn’s dynamic analysis capability using the AM2 integrator, a benchmark problem for damp-
ing effects in the Dymore release package is used as an example. This example involves a dynamic analysis of a 
uniform cantilevered beam under an impulsive excitation, which is shown in Figure 10. The excitation was applied at 
the free tip along both the x2 and x3 directions simultaneously. The simulation range was 0 to 1 second. The sectional 
stiffness constants can be found in Table 6 and the units were the same as those used in the previous example. This 
beam is 2.4 meters long. The inertia properties were: 1.61 kg/m for the unit mass density, 8.60×10−4 and 1.10×10−4 

kg m2 for the mass moment of inertia about x2 and x3 direction, respectively. Two cases were analyzed: one without 
damping effects and the other with damping coefficients of 8.0× 10−4 s for all the six degrees of freedom. The time 
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Figure 8: Percent error in u3 as a function of the number of nodes. 

Figure 9: Percent error in u3 compared to a highly refined solution in BeamDyn as a function of the number of nodes 
for 39 first- to sixth-order LSFEs, coincident with sectional properties. 
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steps for these two cases are 1 × 10−4 and 5 × 10−4 seconds, respectively, given that the damping will help the con-
vergence and stability during simulation. The beam was discretized by one fifth-order element in BeamDyn analysis 
for a converged result. The time histories of all the displacement and rotation components are plotted in Figure 11. 
The damping effects can be clearly observed from these results. Furthermore, the accuracy of the present results of 
damped case were examined by the root-mean-square (RMS) errors, which aggregates the magnitudes of the errors in 
predictions for various times into a single measure of predictive performance. The error was calculated using 

max 
 Ln

[uk − ub(tk)]2 k=0 3εRMS =
max (48) Ln

[ub(tk)]2 k=0 

where ub(t) is the benchmark solution given by Dymore using eight third-order elements and 5×10−4s time increment. 
The RMS error for three displacement components were 1.80× 10−3 , 1.32× 10−3, and 2.70× 10−3, respectively. 

TIME (s) 

Figure 10: Impulsive excitation. 
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Table 6: Stiffness constants of the cantilevered beam in Example C 

C11 C22 C33 C44 C55 C66 

4.35E+07 1.40E+07 2.81E+06 2.81E+04 2.33E+04 2.99E+05 

D. Analysis of NREL 5-MW Blade 

The last example is to examine the efficiency and accuracy of the different time integrators that have been implemented 
in BeamDyn. The NREL 5-MW blade was analyzed in a cantilever condition, while a white-noise force is applied at 
the free tip along the flap direction. White noise was used to mimic the magnitude and frequency content of applied 
aerodynamic loads under realistic turbulent conditions. The damping coefficient is set to 10−3 s. Figure 12 shows 
the time history of the applied force and its power spectral density (PSD). The flap direction responses are plotted in 
Figure 13. Four cases were conducted in BeamDyn: the first three cases were using the AM2 time integrator with time 
step size: 2.5× 10−2 s, 5× 10−3 s, and 5× 10−4 s, respectively, while the fourth case was using RK4 time integrator 
with time step sizes 5 × 10−6 s. It can be observed that for an implicit AM2 time step beyond 0.005 s, the solution 
is nearly identical to the fully resolved explicit RK4 solution. For an AM2 time step of 0.025 s, the solution remains 
stable and tracks the other solutions, but error grows at higher frequencies. The spikes at 0.7 Hz and 2 Hz correspond 
to the first and second blade flapwise natural frequencies, respectively. The spike above 5 Hz–above the frequency 
range of excitation–is brought about by nonlinear effects. 

The convergence rate against time step size for the AM2 integrator is also examined. The result from the RK4 
simulation is taken as the benchmark solution. The normalized RMS error defined in Eq. (48) is plotted in Figure 14, 
in which second-order convergence as a function of time increment size can be observed. It is also pointed out that a 
full Newton-Raphson algorithm has been implemented in BeamDyn. The total and average numbers of linear system 
solves, which are related to the computational time required for the solution, are plotted in Figure 15. It can be 
observed that while the total number of linear system solves reduces with increasing time step, the average number of 
solves per step increases. This means that the computation time cannot be cut in two by doubling the time step. 
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Figure 11: Tip displacement and rotation histories of a cantilever beam under impulsive excitation. 
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Figure 12: Applied white noise force at the tip of a cantilevered NREL 5-MW blade. 
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VI. Summary 

This paper reported on the development of BeamDyn, a beam solver in the FAST modularization framework. 
Geometrically exact beam theory has been reformulated into the first-order state-space form so that first-order time 
integrators, as required by FAST framework for tight-coupling analysis, can be applied. Numerical examples are 
provided to verify and validate the capability of BeamDyn in analyzing initially curved/twisted beams. A validation 
example is also presented where the numerical results are compared with experimental data. In all the cases, good 
agreement was observed. The convergence rate for analysis of realistic wind turbine blade is discussed. The features 
of BeamDyn can be summarized as follows: 

1.  Based on geometrically exact beam theory, BeamDyn is capable of dealing with geometric nonlinear beam 
problems with arbitrary magnitude of displacements and rotations for both static and dynamic analyses 

2.  Along with a preprocessor like PreComp or VABS, BeamDyn takes full elastic coupling effects into account 

3.  The governing equations are reformulated into state-space form, thus, making it amendable into FAST for tight-
coupling analysis 

4.  The space is discretized by spectral finite elements, which is a p-version finite element, so that exponential 
convergence rate can be expected for smooth solutions 

5.  Different time integrators have been implemented in BeamDyn; users will have options based on their needs 

6.  BeamDyn is implemented following the programming requirements (data structures and interfaces) of the FAST 
modularization framework. 

Future work includes the proposal of a practical approach to smooth the geometry and sectional constants to help 
achieve the expected exponential convergence rate. In addition, this module will be coupled to FAST and verification 
and validation will be conducted on a full wind turbine system. 
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